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Abstract—Serverless applications consist of functions written in
heterogeneous programming languages, use diverse data stores
and communication services, and evolve rapidly. Consequently,
it is challenging for serverless tenants to protect their appli-
cation data from inadvertent leaks due to bugs, misconfigura-
tions, and human errors. Cloud security tools, such as Iden-
tity and Access Management (IAM), lack observability into
a tenant’s application, whereas the state-of-the-art dataflow
tracking tools require support from the cloud platform and
incur significant runtime overheads. We present Growlithe, a
tool that integrates with the serverless application development
toolchain and enables continuous compliance with data policies
by design. Growlithe allows declarative specification of access
and data flow control policies over a language- and platform-
independent dataflow graph abstraction of a serverless appli-
cation, and enforces these policies through a combination of
static analysis and runtime enforcement. We used Growlithe
with applications using Python and JavaScript functions that
can be hosted on AWS Lambda and Google Cloud Functions
platforms. We empirically demonstrate that Growlithe is cross-
cutting, portable and efficient, and enables developers to easily
adapt their application and policies to evolving requirements.

1. Introduction

Security and compliance is a shared responsibility be-
tween cloud providers (e.g., AWS, Azure, Google Cloud)
and their tenants [1–4]. In light of the recent data privacy
regulations, such as GDPR [5], CCPA [6], CPPA [7], the
responsibility of ensuring compliance with the regulations
remains with the cloud tenant (the data controller in GDPR
parlance1), whereas the cloud platform provider (the data
processor) is expected to only process the data according
to the tenant’s instructions. Cloud providers offer mutual
isolation for tenants’ code, e.g., through virtual machines,
containers, and trusted execution environments (e.g., SGX
enclaves), and data, e.g., through identity and access man-
agement tools (IAM) [8–10], network access control [11]),
and encryption for data in transit. However, a remaining
challenge is protecting a tenant’s data against its own bugs,
vulnerabilities, and misconfigurations.

Several tools were designed in the last few decades
for securing data in monolithic applications [12–19]. These
tools explored language designs for specifying the desired

1. Other regulations [6] also define equivalent roles.

data policies and system implementations for enforcing the
policies through access control, and static and dynamic in-
formation flow control mechanisms. However, organizations
are increasingly migrating their applications to serverless
platforms (e.g., AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions) [20], which offer auto-scaling,
high availability, and a pay-per-use model, enabling develop-
ers to focus on their business logic. Unfortunately, the pre-
serverless era tools cannot address the challenges in ensuring
compliance that are pertinent to the serverless computing
paradigm and platforms.

First, unlike prior work, a tool for serverless appli-
cations needs to handle heterogeneity within the applica-
tion, which arises from functions written in diverse pro-
gramming languages (e.g., JS, Python, C, Go) and relying
on diverse services (e.g., queues, key-value stores, and
databases) [20]. Second, unlike conventional long-running
applications, serverless functions typically have very short
startup and execution times (in the order of milliseconds to
a couple of seconds) [21], and even the inter-function com-
munication over the network adds to the application over-
heads. Thus, a compliance tool for serverless must minimize
runtime overhead to avoid impacting the overall application
performance and ultimately its billing costs. Third, a tool
needs to address challenges due to the serverless platform,
such as the possibility of leakage of data across client
requests due to the container reuse optimization designed for
reducing performance overheads. Finally, while most prior
work focuses on evaluating their tool on a snapshot of an
application and its data, an effective tool must be able to
keep up with frequent changes in a serverless application.
In particular, different parts of the application, which may
be maintained by different development teams, may evolve
independently of each other. Ensuring continued end-to-end
compliance in such an evolving application is non-trivial.

Cloud IAM tools [8–10] allow cloud tenants to restrict
access to their applications and resources at a coarse gran-
ularity (e.g., allowing read/write access on a database to a
specific function or a tenant). However, IAM tools are not
sufficient for tenants to ensure compliance for their users’
data records, which would require information flow control.
Recent work has proposed new tools for cloud tenants to
specify and enforce data flow restrictions in serverless appli-
cations both at a coarse granularity (similar to IAM) [22, 23]
and at a fine granularity (accounting for user-specific poli-
cies) [24]. However, these tools either support applications
written in a single programming language, incur significant



runtime overhead, or depend on custom containers, thus
requiring support from cloud providers for adoption.

We present Growlithe, a tool that serverless applica-
tion developers can integrate in their software development
toolchain and achieve compliance without requiring any
modifications or support from cloud providers. Growlithe
requires modest developer inputs for specifying the policies
required by the users, the organization, or the regulations,
and enables efficient policy enforcement at the application
source code layer.

Growlithe builds a language- and platform-independent
dataflow graph abstraction of a serverless application (§3.1),
on which developers specify data policies, independent of
the application implementation. Developers specify fine-
grained access control and information flow control poli-
cies in a declarative specification language, which capture
requirements for storing and processing sensitive data of the
applications’ end users (§3.2).

Growlithe enforces the policies through a combination
of static and dynamic enforcement (§3.4). The static en-
forcement runs on the abstract application dataflow graph
and, therefore, is language- and platform-independent. For
runtime enforcement, Growlithe instruments the application
source code with assertions that are checked during appli-
cation execution. The runtime checks are also implemented
largely in a platform-independent manner, though Growlithe
may leverage platform-specific tools (e.g., logging services)
for performance optimization. Static enforcement helps to
reduce performance overheads of the runtime enforcement,
while runtime enforcement helps to enforce the policies that
could not be checked statically.

Growlithe logs policy check failures during offline and
runtime enforcement with information about the inputs and
the operations involved in the policy violations. Developers
can use these logs to revise their application code, configu-
ration, or policy specification, and re-run Growlithe before
deploying the new version of the application.

Contributions. To the best of our knowledge, Growlithe
is the first tool designed to empower developers in en-
abling continuous policy compliance by design within their
serverless applications. Growlithe centralizes specification
of data policies for serverless applications consisting of one
or more functions, data stores, and communication services,
and automates the enforcement of the policies. Together,
these two features help to ease the developer’s burden in
ensuring policy compliance.

Concretely, we make the following contributions. (i) We
present language- and platform-independent abstractions,
a declarative policy specification language, and a hybrid
policy enforcement mechanism with a narrow interface
for integration with function implementations (§3). (ii) We
provide a prototype of Growlithe, which supports Python
and JavaScript functions (the two most popular languages
for serverless [20]), and can be run on AWS Lambda
and Google Cloud Functions (§4). (iii) We demonstrate
Growlithe’s generality and efficacy in enabling compliance
by applying it to three applications, covering different char-
acteristics of realistic serverless application architectures

(§5.1). (iv) We quantify Growlithe’s performance costs
(§5.2, §5.3), analyze the costs involved in supporting new
programming languages and services and in porting to a
different cloud platform (§5.4), and discuss Growlithe’s
effectiveness in addressing policy violations due to bugs or
evolving application requirements (§5.5).

2. Motivation and Goals

We first motivate the need for a new security tool for
serverless applications, then we discuss the high-level goals
of this tool and the threat model it targets.

2.1. A Primer on Serverless Paradigm

Serverless computing is a new paradigm, in which appli-
cations are architected as a collection of multiple stateless
functions that are run as independent units of computation,
rely on external data stores for persisting their data, and
communicate with each other via network or external data
stores. Cloud platforms run these functions in containers,
manage the allocated resources, and automatically scale
them to adapt to variable loads.

Protecting data in a serverless application requires un-
derstanding where the data is stored and accessed, and how
the data is communicated between different components of
the application. Communication to/from functions can occur
in several ways. First, the functions may communicate with
each other via data stores (e.g., databases, key-value stores,
file systems), or communication services (e.g., message
queues or broker services). Second, a function may directly
invoke another function (e.g., using a remote procedure
call, or REST APIs), where data may be passed through
arguments to the invoked function and results returned from
the called functions. Third, orchestration services [25] may
mediate routing of the control and results from one function
to another according to the control flow configuration of the
application. Functions may also call other external services,
e.g., data store services, by invoking the public APIs of the
services. Similarly, functions may be invoked in response to
specific “event triggers” which may originate from external
services, client requests to the functions, or periodic events.

Additionally, data may flow between different invoca-
tions of a function that end up executing in the same “warm”
containers, which are reused to reduce function startup
times. Since container scheduling policies are opaque to
serverless applications, it is challenging to predict which
dataflows across invocations may be potentially sensitive.

In this paper, we propose Growlithe to enforce con-
straints on such data access and data flow patterns to achieve
compliance with user-defined data policies.

2.2. Motivating Example

Consider the example of a fictitious insurance company
iClaim, which runs a claim processing application called
ClaimApp as a serverless application. Several companies
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Figure 1: A sample insurance claim processing app. Functions are triggered by APIs, invocations, and DynamoDB events.

already use serverless workflows for insurance services
[26–28]. Figure 1 shows the application architecture and
workflows. ClaimApp serves two types of end users: the
insurance customers, who submit claims and check their
claims’ status, and the company’s employees or insurance
adjusters who manually verify the submitted claims. The
application maintains four tables: UserPlan, which con-
tains customers’ coverage plans, Claims, which contains the
claims submitted by customers, Adjusters, which contains
adjusters’ details, and ClaimAdjMap, which maps claims
to the adjuster assigned for verification. The application
exposes four API endpoints. Three of them allow a user
to add a new claim (AddClaim), update an existing claim
(UpdateClaim) in Claims, and retrieve a claim (GetClaim)
from Claims. The fourth endpoint allows an adjuster to
retrieve the list of claims assigned to her from ClaimAdjMap.

The application backend contains two additional func-
tions ValidateClaim and AssignAdjuster. The function
ValidateClaim, which is triggered upon adding or updating
a claim in Claims, performs preliminary checks against the
claimant’s coverage plan and, if the claim is valid, invokes
AssignAdjuster. The function AssignAdjuster assigns an
adjuster to an unassigned claim by adding a mapping in
ClaimAdjMap.

We consider three policies that the insurance company
may wish to enforce on their customers’ data.

P1 Customers should only be able to access and update
their own claims.

P2 Adjusters should only be able to access and process
claims that are assigned to them.

P3 Customers’ plan data should only be used for validating
submitted claims and not be accessible to adjusters.

These policies ensure the confidentiality and integrity
of users’ claims and plan details. However, enforc-
ing these policies can be challenging. For instance, for
policy P3, developers should ensure that there is no
data flow from UserPlan table read in ValidateClaim
to the ClaimsAdjMap table written in the subsequent
AssignAdjuster function. In general, complying with such
policies requires enforcing per-user record access control
and data flow control, which the state-of-the-art solu-
tions [8–10, 22] do not support.

We use this application as a running example throughout
this paper to explain different parts of Growlithe’s design.

2.3. Design Goals

Growlithe is designed to address the following goals.
D1. It must be able to protect data in the presence of

multiple complex workflows in an application, i.e., it must
be able to enforce complex policies involving data accesses
and data flows within and across workflows.

D2. Given the complexity of serverless applications and
policies, the tool must ease the developers’ burden of spec-
ifying and reasoning about the correctness of the policies.

D3. The tool should be easy to port across different
cloud platforms to increase adoption for multiple serverless
applications and avoid vendor lock-in.

D4. The tool must be able to handle application com-
ponents written in different programming languages and
relying on diverse data store and communication services.

D5. The tool must handle the cloud platform’s schedul-
ing and resource management semantics (e.g., container
warm-start), which may impact the application’s data flow
across components.

2.4. Threat Model

Growlithe’s goal is to enable serverless developers to
protect their own data against inadvertent leaks and im-
proper use. We assume that the developers are not malicious
and wish to secure users’ and applications’ data. However,
their application is susceptible to compliance violations
due to bugs and misconfigurations, which may arise due
to complexity of the application’s workflows, as well as
the platform’s underlying scheduling and resource manage-
ment semantics that are typically hidden from developers
in serverless settings (e.g., reusing “warm” containers for
future function invocations).

Growlithe’s compliance jurisdiction is the application
code and boundaries, and it does not inspect external ser-
vices or functions. For example, if an application relies on a
cloud database service, Growlithe only covers the APIs ex-
posed to the application, but not the database internals. If the



Id name Description
Data conduit identifiers
Object Reference to an event (e.g., trigger) or an object being

accessed (e.g., an S3 file, or a DynamoDB record,
function parameters).

ObjType Type of the event or object being accessed.

ObjAttrs Extensible list of attributes associated with a given
object (e.g., ContentType, LastModified)

Resource Reference to the base resource of an object (e.g., S3
bucket, DynamoDB table).

ResourceAttrs Extensible list of attributes associated with the base
resource (e.g., ResourceRegion, indicating the region
in which the resource is deployed).

ObjFn Name of the function where the object is accessed.

ObjCodeLoc Function source file, line where the object is accessed.

Conduit API identifiers
ObjReadAPIs Set of APIs for reading the object (e.g., GetItem,

Query, Scan for DynamoDB).

ObjWriteAPIs Set of APIs for writing to the object (e.g., PutItem,
UpdateItem for DynamoDB).

Function instance identifiers
InstName Name of the serverless function instance deployed.

InstRegion Deployment region of the function instance.

InstTime Time at which the function instance makes a request.

User session identifiers
SessionAuth Session authentication credentials of the end user

making a request.

SessionRegion Region from where an end user makes a request.

Dataflow graph identifiers
CurrNode Reference to the current node.

PredNode Reference to the predecessor node.

TABLE 1: Growlithe’s abstract identifiers.

service is considered un-trustworthy, the application could
send data to the service in encrypted form and decrypt the
data retrieved from the service only within the application.

Growlithe’s guarantees depend on two things. First, the
developer must specify correct policies and create the correct
mapping of the information used in policy evaluation (§3).
Second, the cloud provider must be trusted to fulfill its share
of responsibilities towards its customers for ensuring secu-
rity and compliance [2–4]. Thus, we assume that the cloud
platform is correct (e.g., orchestrates functions correctly),
secured (e.g., no exploits in the function containers), and
does not attack or bypass Growlithe (e.g., deploys the correct
functions containing Growlithe’s instrumentation).

All active attacks against the tenants’ applications, the
cloud platform and Growlithe, and the mitigations for the
attacks are orthogonal to this work.

3. Growlithe Design

Growlithe is a tool that integrates with a serverless
application development lifecycle to enable compliance by
design. In order to minimize cloud-platform and language
dependencies, Growlithe first defines five types of identifiers

(Table 1), which it uses in various abstractions, namely, a
dataflow graph, the policy specification language, and the
taint tracking infrastructure. While integrating Growlithe
with an application deployed on a specific cloud platform,
developers only need to specify the mappings of these iden-
tifiers to variables in application source code or values from
the cloud platform environment, which enables Growlithe
to perform compliance checks in the context of the specific
instantiation of the application on the platform.

Once the mappings are defined, Growlithe consists of
four operational stages, as shown in Figure 2: dataflow
graph generation, policy specification, static enforcement,
and runtime enforcement. The first three stages operate on
an application prior to its deployment, while the last stage
operates on the deployed application.

Dataflow Graph Generation. 1 Growlithe analyzes
the application source code and configurations and generates
a dataflow graph. The analysis is done in a modular fash-
ion. Growlithe performs a per-function dataflow analysis on
each serverless function independently. Additionally, with
the help of the configuration input, Growlithe identifies
the application workflows and performs an inter-function
dataflow analysis along those workflows. It combines the
dataflow graphs of all the analyses to generate the complete
application dataflow graph (ADG).

Policy Specification. 2 Growlithe automatically gen-
erates policy templates based on the ADG. The templates
show the data flows discovered in the application workflows
and denies all the flows. If any policies were already defined
for the application previously, Growlithe adds them to the
newly generated templates (see §3.2 for policy semantics).
3 Optionally, a developer can further refine the generated

policy templates manually based on specific compliance
requirements. 4 Growlithe adds appropriate policies to the
edges of the ADG to generate an annotated application
dataflow graph (ADG).

Static Enforcement. 5 Next, Growlithe statically
checks the policies on the annotated dataflow graph. When
Growlithe encounters a policy check failure on a dataflow
path, it generates an error, and logs the dataflow path with
the annotated policies and the inputs, which helps devel-
opers to debug the failure and revise their application or
policy specification. 6 For policies that depend on dynamic
inputs (e.g., time of day, dynamic reference to a resource),
Growlithe defers the checks to runtime. For this, it adds
the corresponding policies as assertions in the application
source code at appropriate places identified by the edges of
the dataflow graph. Growlithe also adds taint propagation
logic in the functions and generates IAM policies that
allow basic execution of the functions with all accesses
to the application’s resources, which is required to allow
deployment of the application.

Runtime Enforcement. 7 The instrumented applica-
tion code is deployed along with the configuration and IAM
policies. 8 As the application executes different workflows,
the taint propagation logic and assertions help to enforce the
deferred policies. When an assertion fails, Growlithe stops
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Figure 2: Growlithe’s operational stages integrated with the serverless application development lifecycle.

the execution of the function and logs the event with the
details of the offending dataflow path, assertion, and inputs.

9 Developers can inspect the logs for policy violations
and revise the source code, configurations, or policy speci-
fications for the next version of the application.

We now elaborate on these stages and explain
Growlithe’s design.

3.1. Dataflow Graph Generation

For the offline stages, Growlithe relies on a language-
independent dataflow graph abstraction of the application,
on which it specifies policies and enforces these policies
statically. We define Growlithe’s application dataflow graph
as a directed acyclic graph, ADG = (V,E), where V is
the set of nodes representing data conduits, i.e., entities that
contain or carry data to be subjected to compliance policies,
and E ⊆ V × V is the set of directed edges representing
the flow of data between the data conduits.

Data flows between serverless functions and to/from
external services in several ways as indicated by the different
communication modes described in §2.1. For each of these
communication modes, Growlithe models the data conduits,
such as function arguments, return objects, file systems,
queues and other data stores.

An edge between two conduit nodes is represented as
e = (v1, v2, π) : v1, v2 ∈ V, v1 ̸= v2, which implies that
data is read from the source conduit v1 and written to the
sink conduit v2. For each conduit type, Growlithe models
the associated APIs into read and write operations. The
label π encodes edge properties, e.g., the type of the edge
(π.type) and the policy on the edge (π.policy). The edge
type indicates an intra-function or an inter-function dataflow.
A policy consists of conditions under which data can be read
from the source conduit and written to the sink conduit. We
discuss the policy specification in detail in §3.2.

Per-function dataflow graph generation. Growlithe
generates ADG in two steps. In the first step, it generates a

dataflow graph for each function of a serverless application.
For this, it uses CodeQL [29], which takes as input the
source code of a function f, the set of source conduits Sf,
and the set of sink or target conduits Tf, and generates an
AST (abstract syntax tree), a CFG (control flow graph), and
the data dependencies between the function elements based
on define-use relationships [30]. (We discuss Growlithe’s
CodeQL module further in §4.)

Besides the standard define-use rules that capture read-
after-write dependencies in conventional program syntax
(e.g., assignment statements, conditional statements, etc.),
Growlithe needs to capture read-after-write dependencies
across data conduit APIs to track data flows. For example, a
serverless function may write to a temporary file in its con-
tainer’s local file system (or a DB record) and subsequently
read the file (or the record) in the same or a different func-
tion invocation. Developers model data flow rules between
the read and write conduit API identifiers defined in Table 1.

While many conduits have distinct read and write APIs,
some APIs in dynamic languages like JavaScript may have
complex, unconventional semantics. For example, Amazon’s
S3 service provides an API on an S3 bucket with the follow-
ing signature: bucket.download_file('REMOTE_OBJECT',
'LOCAL_FILE'), which allows a function to download
REMOTE_OBJECT from its S3 bucket and store it in
LOCAL_FILE in the temporary file system of the container
hosting the function. In this case, the data flow between
bucket.REMOTE_OBJECT and LOCAL_FILE is encoded within
a single API’s semantics. Developers may manually model
the data flow rules for such APIs for each conduit in each
language used in their application.

Growlithe combines the IR abstractions along with the
sets Sf and Tf to generate a per-function dataflow graph.
For each node in the dataflow graph, Growlithe records a
uniquely generated node identifier, as well as one or more
conduit properties parsed from the function source code.
The data conduit identifiers in Table 1 are the properties
recorded by Growlithe for the dataflow graph nodes.



Linking per-function dataflow graphs. In the second
step, Growlithe parses the application’s configuration files,
which provide information on inter-function dependencies
and the sequence of function invocations. Growlithe uses
this information to link the per-function dataflow graphs to
generate the end-to-end application dataflow graph ADG.

Cross-language ADG. Building the ADG across
components written in multiple languages requires some
language-specific modelling. Specifically, a developer needs
to model data conduits and the read/write operations on the
data conduits in each language. This is a one-time effort
required from a developer for each conduit type in each
language (see more discussion in §5.4).

Example. Figure 3 shows a subset of the final ADG
generated by Growlithe for the claim processing appli-
cation (cf. §2.2) written in Python for the AWS lambda
platform. Growlithe first generates dataflow graphs for
each lambda function in the application. Gvc = (Vvc, Evc)
and Gaa = (Vaa, Eaa) for the functions ValidateClaim
and AssignAdjuster, respectively. The vertex and edge
sets for the graphs are as follows: Vvc = {n1, n2, n3},
Evc = {e1, e2}, Vaa = {n4, n5, n6}, and Eaa = {e4, e5}.
The edge e3 represents an inter-function data flow.

3.2. Policy Specification Framework

Once the ADG is generated, Growlithe associates poli-
cies with the graph edges to generate an annotated graph,
ADG = (V,E′), where E′ = {(si, di, π′

i) : (si, di) ∈ E, π′
i

= (πi.type, πi.policy ̸= ϕ)}. We now describe Growlithe’s
policy specification language and the edge policy semantics.

Growlithe uses a declarative policy specification lan-
guage, which is similar to Datalog [31] and inspired from
the specification defined in Thoth [16]. An edge policy
consists of two types of permissions: read and write, which
specify conditions under which data can be read from the
source conduit and written to the sink conduit of the edge,
respectively. These conditions are expressed as one or more
clauses connected by a disjunction (i.e., or, written “∨”),
where each clause further consists of one or more predi-
cates connected by conjunction (i.e., and, written “∧”). A
permission is allowed if at least one of the clauses evaluates
to true, and disallowed if all clauses evaluate to false. The
default policy sets both the permissions to deny.

Growlithe defines a set of predicates for arithmetic and
string operations, comparisons, and taint tracking. Table 2
shows a subset of the predicates supported in Growlithe’s
language. (The complete predicate list is in §A.) Specific
predicates use arguments that are set or compared against
constants or values of the abstract identifiers defined in
Table 1. Any taint predicates in the permissions specify
conditions to allow data flow from the source to the sink.
Taint predicates appear typically in the write permission of
the last edge in a workflow, which represents the boundary
of the application and requires checks before data is allowed
to be exfiltrated.

Taint Labels. Growlithe associates a taint label with
data conduits and with functions. For conduits external to

Predicate Description
eq(x, y) Check if x == y.

not(x) Check if !x is true.

concat(s, x, y) Assign to s the concatenation of strings x || y.

getVal(v, d, k1, ..., kn) Assign to v the dictionary value associated
with keys k1, ..., kn, i.e., v = d[k1][...][kn].

taintSetIncludes(n, l) Check if the taint set for ADG node n con-
tains label l.

taintSetExcludes(n, l) Check if the taint set for ADG node n does
not contain label l.

TABLE 2: Subset of Growlithe’s policy predicates.

functions, e.g., databases, KV stores, queues, Growlithe
stores the labels as metadata within the corresponding ser-
vice. Growlithe supports a distinct label for each object
maintained within the service, e.g., each database record,
key-value pair, or queue element. For the functions and the
conduits internal to functions, e.g., the local file system, the
taint labels are stored in the container global memory and
as file metadata, respectively.

A label for a data conduit is defined as
“ResourceName:ObjName”. The ResourceName and
ObjName may be resolved from the abstract identifiers,
Resource and Object, respectively, either statically or at
runtime. The label for a function is defined as “InstName”,
which is the unique name of the function instance in an
application. Typically, the instance name corresponds to the
function’s static name.

The current label semantics can differentiate multiple
invocations of a workflow triggered via direct function calls
and via operations on data stores or communication services.
The semantics can be easily extended to differentiate the
invocations based on other trigger sources, such as user
requests (by adding user identification) and periodic events
(by adding event timestamps).

The taint predicates can describe a set of labels by
under-specifying a part of the label using * symbol,
indicating that all labels that match on the remaining
parts of the label satisfy the predicate. For example, the
predicate taintSetExcludes(N, 'r:o') specifies that the taint
set must not include the label of an object r.o, while
taintSetIncludes(N, 'r:*') specifies that the taint set could
include the label of any object in resource r.

Policy specification example. The policy P3 for the
ClaimApp in §2.2 can be satisfied by specifying the follow-
ing policy on edge e4 in Figure 3:

read :- allow
write :- taintSetExcludes(PredNode, 'UserPlan:*')

This policy allows writing to n6 (a sink-only node) if
the taint set of the conduit read in the function (node n4)
does not contain any taint label for data from UserPlan.
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def lambda_handler(event, context):

  claim = event[���]

  claim_type = claim["ClaimType"]
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claim_adj_map = dynamodb.Table("ClaimAdjMap")
 
def lambda_handler(event, context):
  claim_id = event["claimId"]
  # Choose an adjuster
  adjusters = adjusters_table.scan()
  adjuster = choose(adjusters)
  
  claim_adj_item = {
    "ID": claim_id,
    "AdjID": adjuster["ID"],
  }
  # Store the assigned adjuster
  claim_adj_map.put_item(claim_adj_item)
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Figure 3: Subset of the Application Dataflow Graph (ADG) for the Claim Processing application, showing the intra-function
dataflows (solid edges) and inter-function dataflows (dashed edges) between ValidateClaim and AssignAdjuster. Blue
nodes represent the persisted data stores; yellow nodes represent event source, function response and function payloads.

3.3. Policy Specification Guidelines

When Growlithe is run on an application for the first
time, its policy generator configures default template poli-
cies for each edge in the application’s ADG, which denies all
reads and writes. Subsequently, a developer revises the poli-
cies on specific edges to allow data access and flows subject
to compliance goals. Below we describe the guideline for
developers to systematically add policies on the edges of the
ADG—starting from “boundary” edges and then moving to
the intermediate edges—to progressively allow the minimal
set of dataflows required for the application to function.

Policies on edges consist of two types of constraints:
global and local. The developer first identifies any con-
straints that apply globally on the dataflows between all
conduits and functions (e.g., region checks) and prepares
the corresponding predicates, which will be added to read
policies of edges from source nodes and to write policies
of edges to the sink nodes. We now discuss the edge-
local constraints and how developers combine them with
the global constraints.

1) Boundary edges: These are the edges connecting to
boundary nodes (i.e., source nodes with no incoming edges
and sink nodes with no outgoing edges). The read/write
constraints on the boundary edges are of two types. (a)
Each source and sink that is statically identified (hardcoded)
has a distinct node in the ADG; thus, their read and write
policies are added to the individual edges from the source
and edges to the sink, respectively. (b) If the sources and
sinks are identified as variables in the ADG, meaning they
can only be identified dynamically, the policies for each
of them are added together, separated with a disjunction,
on the edge originating from the source or the edge going
to the sink. The effective read permission on the source
node of a boundary edge is the conjunction of the global
predicates and the read predicates. In contrast, the effective
write permission on the sink node of a boundary edge is the
conjunction of the global predicates and the write predicates.

2) Intermediate edges: Policies may be required on inter-
mediate edges in two scenarios. (a) The intermediate nodes
may represent data conduits that are shared across multiple
workflows, and different objects from the data conduits
need to be isolated across the workflows. (b) The dataflows
through intermediate nodes may be subject to checks based
on information available only locally at those nodes, e.g.,
local time or names of files in a local filesystem.

The effective policy on an intermediate edge includes a
read permission on the source node that is the conjunction
of the global predicates and the read predicates, and a write
permission on the sink node that is the conjunction of the
global predicates and the write predicates.

3) Remaining edges: After all the data access, dataflow,
and isolation concerns have been addressed in the previous
steps, the developer finally checks if there are any remaining
edges with only the default deny policies. Each of these
edges would be an intermediate edge that is part of only one
workflow. Given the conditions placed on the other edges,
the leftover edges do not lead to any dataflow violations.
Thus, a developer can safely set the read and write permis-
sions on these edges to allow, allowing the dataflows and
ultimately allowing the application to function.

Revising policies upon application changes. If the
application evolves or if policies change, developers may
need to re-run the dataflow graph generator and the policy
generator to revise the annotated ADG in accordance with
the compliance requirements. The policy generator reviews
the difference between the current and the previous version
of ADG. It drops the policy for each edge dropped from
the previous ADG, adds a new default policy for each edge
added to the ADG, and preserves the refined policies on
existing edges. Subsequently, a developer can revise the
policies on all edges in the current ADG appropriately to
preserve the compliance guarantees.



3.4. Policy Enforcement

Achieving compliance conceptually entails enforcing the
policies specified along the edges of the ADG. Growlithe
enforces policies in two stages. First, during the static anal-
ysis stage, Growlithe traverses ADG to evaluate policies on
all edges. For policies that cannot be evaluated statically,
Growlithe adds assertions at appropriate places within the
source code of functions. In the second stage, the assertions
enforce the deferred policies during function execution.
In each stage, enforcing policies entails resolving the ar-
guments in policy predicates (equivalently assertions) and
evaluating the predicates (respectively assertions). When a
policy evaluation fails, Growlithe logs the error and notifies
the developer, who must then revise their application and/or
policies. We describe the two mechanisms in detail here.

Static enforcement. Given an ADG, Growlithe stati-
cally checks the policies on the edges. For each edge policy,
it tries to check the read permission on the source conduit
(respectively, the write permission on the sink conduit) by
evaluating the permission clauses and predicates. For pred-
icates referring to abstract identifiers (Table 1), Growlithe
attempts to resolve the identifiers with application-specific
attributes from various sources. It resolves conduit and API
identifiers from ADG node properties and function names
from configuration files. Predicates relying on time, user
session information, or an external service’s region cannot
be resolved statically and are deferred to runtime checks.

A key challenge is to resolve taint labels for evaluating
the predicates taintSetIncludes and taintSetExcludes in any
policy. At each ADG node v, Growlithe computes the asso-
ciated taint label as a union of its current label, the labels
of all its predecessor nodes, and the labels of the functions
reading from the predecessor nodes and writing to the node’s
conduit, i.e., taint(v) =

taint(v)
⋃

p∈Pred(v)

taint(p)
⋃

p∈Pred(v)

taint(p.ObjFn)

where Pred(v) = {p : (p, v) ∈ E} is the set of predecessor
nodes of v, and p.ObjFn is the function that reads from p
and writes to v.

After resolving the abstract identifiers wherever possible,
Growlithe performs a depth-first traversal of the ADG and
attempts to evaluate the edge policies. For each policy,
Growlithe evaluates the read and write permissions sepa-
rately using a lightweight Datalog logic solver [32]. For
each permission, Growlithe may see one of three outcomes
during static evaluation. (i) Growlithe may evaluate the
permission to deny, i.e., all the permission clauses may
resolve to deny. In this case, Growlithe generates an error
indicating the failed policy and the source code location, and
alerts the developers. (ii) Growlithe may evaluate a policy
to allow statically, in which case it eliminates those checks
from the application’s runtime deployment configuration.
(iii) Growlithe cannot fully evaluate a policy, in which case
it defers the unresolved predicates to runtime checks.

Source code instrumentation. To support runtime
checks, Growlithe modifies the application source code in

two ways. First, it transforms the unresolved read (respec-
tively write) permission predicates of an edge into assertion
conditions and injects them into the application function
(tailored to the function’s programming language) before
the read (respectively write) operations associated with the
edge, respectively. Second, Growlithe initializes a datastruc-
ture GROWLITHE_TAINTS in each function and adds code to
append the labels of the source conduits to it, write to the
sink conduits subject to the accumulated taint labels and
data-flow conditions, and persist the accumulated taint as
metadata in the sink conduit.

Generating deployment configuration. Cloud
providers offer IAM tools to regulate type of actions
that the functions can perform, and the resources that the
functions can access. Even without Growlithe, the IAM
role of each function is required when the function is
created. Similarly, developers need to set proper IAM roles
based on the trigger type of the functions (e.g., over HTTP,
by pub/sub messaging, etc.). Ideally, these IAM policies
should be configured following the principle of least
privilege [33]. However, the complexity of IAM often leads
developers to configure overly permissive IAM policies
for their applications. These overly permissive policies are
often the root cause of unintended data leaks [34].

Using the ADG, Growlithe captures the precise re-
sources accessed—specifically, the cloud data services used
for sharing data between different functions of the appli-
cations. Additionally, Growlithe captures the actions per-
formed on those resources by the application functions.
Growlithe uses this information to auto-generate default
IAM policies allowing each function to perform only the
actions captured on each of the discovered resources.

IAM policy example. For the claim processing ap-
plication, for instance, Growlithe generates the following
IAM policy allowing the AssignAdjuster function the
necessary actions on Adjusters and ClaimAdjMap tables
(other resources are truncated due to space constraints):

{
{"Effect": "Allow", "Action": "dynamodb:Scan",
"Resource": "Adjusters"},
{"Effect": "Allow", "Action": "dynamodb:PutItem",
"Resource": "ClaimAdjMap"}

}

Runtime enforcement. Since Growlithe’s static policy
enforcement stage does most of the heavy lifting with
respect to enabling compliance, the runtime enforcement
mechanism is relatively simple. When a function is exe-
cuted, the instrumented logic in the function performs the
following sequence of operations: (i) for each conduit read
by the function, append the conduit’s taint label to the
function’s GROWLITHE_TAINTS, (ii) evaluate the policy asser-
tions prior to each conduit read operation, (iii) evaluate the
policy assertions prior to each conduit write operation, (iv)
complete the conduit write operation, and (v) persist the taint
labels accumulated in the function’s GROWLITHE_TAINTS to
the written conduit’s taint label. If a policy check fails during
runtime, Growlithe aborts the function’s execution.



Our prototype focuses on single-threaded functions,
which constitute a large fraction of function implementa-
tions. In principle, Growlithe can be extended to multi-
threaded functions, for instance, by using locks to synchro-
nize assertion checks and data accesses.

3.5. Security Properties

Completeness. Like any static analysis tool, Growlithe
requires correct modeling of data conduits for generating an
accurate and complete dataflow graph.

Soundness. Assuming conduits are correctly modeled,
Growlithe’s soundness follows from the soundness of

1) ADG generation (§3.1): Growlithe over-approximates
dataflows during ADG generation in two ways. (i) It adds
edges for all possible data flows to a sink node, regardless
of the control flow. (ii) For applications involving black-box
third-party libraries, it assumes all possible dataflow paths
between the library interface and its predecessor and suc-
cessor functions. This ensures that no dataflows are missed.
(False positives are overcome by runtime checks.)

2) Policy specification (§3.3): Policies are specified ac-
cording to the least privilege principle. Initially all policies
are configured to deny dataflows. Each step allows a devel-
oper to carefully reason about conditions to allow dataflows
and explicitly configure those conditions as edge policies.
Furthermore, the effective policy enforced on a workflow is
the conjunction of the read and write permissions along all
the edges in the path, which reduces chances of inadvertent
dataflows due to overly permissive policies at any edge.

3) Static enforcement (§3.4): Predicates that cannot be
checked statically are added as assertions in the functions
for runtime checking. In particular, Growlithe evaluates taint
predicates by analyzing all the path prefixes of a sink node:
if any path fails to satisfy the predicate, Growlithe defers
the taint check to runtime. Thus, no predicates are missed.

4) Policy generation (§3.4): Growlithe’s assertion and
IAM policy generator is a part of its trusted computing base.
The IAM policy generator configures coarse-grained access
control only between functions and resources observed dur-
ing the static analysis and follows the least privilege princi-
ple; other functions and resources in the cloud account are
denied access by default. The effective policy at an ADG
node is the combination of the IAM policy and assertions.

5) Runtime enforcement (§3.4): Soundness is guaranteed
from our threat model, since the application and the cloud
platform do not bypass runtime checks.

4. Implementation

We have implemented a full prototype of Growlithe2.
We build Growlithe’s offline-stage components on top of
CodeQL [29], an industry-grade code analysis tool. CodeQL
supports multiple programming languages and provides sev-
eral intermediate representations (IRs) that Growlithe builds

2. https://github.com/ubc-cirrus-lab/growlithe

upon. Growlithe integrates its runtime components directly
in the application code that is deployed on a cloud platform.

Growlithe consists of two modules: the Core module
written in Python and the Program Analysis module using
CodeQL. First, the Program Analysis module parses each
function’s source code and generates its data dependency
graph by leveraging the model for data conduits, conduit
APIs, and the rules for data flow through them. It annotates
the source and sink nodes within each function’s IR and
then issues queries to generate a SARIF file [35]. Next,
the Core module takes the SARIF input and generates the
function’s dataflow graph. It then parses the application
configuration files, e.g., orchestration configuration, which
provide information about the application’s control flow
across the functions and the resources used in the appli-
cation. Growlithe combines this information with the per-
function dataflow graphs to generate the ADG.

Using inputs from Growlithe and following the guide-
lines from §3.3, developers specify policies on each edge
of the ADG in the form of a JSON file. Subsequently,
Growlithe relies on pyDatalog [32] for evaluating the poli-
cies both during static and runtime enforcement. Dur-
ing static enforcement, Growlithe performs a breadth-first
traversal of the ADG and evaluates the policy associated
with each edge. For policies deferred to runtime checks,
Growlithe adds assertions ahead of the read or write oper-
ations on data conduits in the source code of appropriate
functions. It also generates the IAM policies and adds them
to the application’s deployment configuration.

Growlithe’s Core and Program Analysis modules are im-
plemented in 1500 and 2000 LoCs, respectively. Growlithe
could be deployed as a plugin integrated with client-side
IDEs (integrated development environments) [36, 37], or
with server-side SDKs [38, 39] or cloud tools [33, 40].

Growlithe currently supports Python and JavaScript
functions. In §5.1-§5.3, we focus on evaluations with ap-
plications built for AWS Lambda [41], one of the leading
serverless platforms [20, 42]. In §5.4, we discuss the costs
for supporting additional languages and platforms.

Growlithe only requires manual input from the develop-
ers for the policy specification on the ADG edges. Given the
specification, Growlithe automates the end-to-end pipeline
for enforcing the policies on serverless applications even as
the application evolves.

5. Evaluation

Through our evaluation, we assess (i) Growlithe’s gener-
ality in enforcing policies in diverse applications (§5.1), (ii)
the costs of Growlithe’s pre-deployment steps and runtime
enforcement at scale (§5.2), (iii) the impact of Growlithe’s
costs on real-world applications (§5.3), (iv) the cost for
extending Growlithe to support additional services and lan-
guages (§5.4), and (v) Growlithe’s ability to detect and
prevent policy violations (§5.5).

We ran Growlithe’s pre-deployment steps on an Apple
M1 MacBook Pro (8 cores, 16 GB RAM, MacOS 14.4.1),

https://github.com/ubc-cirrus-lab/growlithe
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Figure 4: Image Processing application.

where we generate an application’s ADG, policies, and the
instrumented code for deployment.

We evaluated Growlithe’s runtime enforcement on the
AWS Lambda platform. We deployed all functions of each
microbenchmark (§5.2) or application (§5.3) in the ca-west-
1 region within single containers configured with 1769 MB
of RAM, and we report the results from runs on Intel Xeon
2.90 GHz CPUs. The container configuration provides one
full vCPU [43], which eliminates the effects of CPU throt-
tling in our measurements and is, therefore performance-
optimal for our single-threaded benchmarks. This allows us
to assess the true performance overheads of Growlithe.

5.1. Case Studies

We demonstrate Growlithe’s generality by applying it on
three realistic serverless applications that can run on AWS
Lambda. These applications cover different characteristics,
such as diverse data stores, inter-function communication
mechanisms, programming languages, and data policies.
Furthermore, the number of functions, as well as the width
and depth of the DAGs (directed acyclic graphs) in the
applications reflect the 95th percentile complexity of real-
world serverless applications [44].

Claim Processing (CP). The application and the
required policies are described in §2.2 and Figure 1.

Image Processing (IP). Figure 4 shows an image
processing application, which retrieves raw images from an
AWS S3 bucket, pre-processes the images through a series
of functions that are orchestrated via AWS Step Function,
and stores the images in another S3 bucket. We developed
the application by extending the image processing bench-
mark [45] into two workflows. We consider the scenario of
a social media service using this application to store and
process images from different sources. Specifically, the ap-
plication handles both users’ private photos and advertisers’
privacy-insensitive images.

The raw images from users and advertisers are stored
in two separate input buckets UserImgs and AdvertImgs,
respectively (raw/ directories in each bucket), and the
final processed images are stored in output buckets
FinalUserImgs and FinalAdvertImgs, respectively. The
AWS Step Function orchestrates the sequence of processing
functions Transform, Filter, Blur, and TagStore, which
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Figure 5: Shopping Cart application.

operate on one image at a time. The first three functions each
download an image file from one of the input buckets into
their local file system (“/tmp/<inputimg>.<fnname>”),
process the image locally, and then upload their output
image as a separate file back to the same bucket. The final
function TagStore reads the input image from an input
bucket and stores the output image into the corresponding
output bucket. The application is triggered when an image
is uploaded to either input buckets, which is passed to the
orchestrator. The orchestrator passes the output image of one
function as the input for the next function. Each function
uses their local file system as a temporary cache while
processing their image.

A key highlight of the application is that it involves
an input-dependent control flow. Users’ photos need to be
subject to all three processing functions, while the Blur
function is not invoked when processing advertisers’ images.

The social media service wishes to (i) restrict processing
of images within the same geographical region where the
images are stored, (ii) adhere to users’ privacy preference
of blurring the background in their images, and (iii) prevent
users’ images from being shared with advertisers. These
requirements translate into the following policies:
P4 Process images in the region that they are stored.

The region of all functions and data stores used in the
application should be the same as the original bucket
where the raw images were stored.

P5 Blur user images. Images stored in FinalUserImgs
must have passed through the Blur function.

P6 Prevent sharing of user images with advertis-
ers. Images from UserImgs should not be written to
FinalAdvertImgs.

P7 Restrict cloud store for intermediate images. The in-
termediate functions (Transform, Filter, Blur) should
store their outputs in the bucket from which they read
the input images to process.

Shopping Cart (SC). Figure 5 shows a part of a
shopping cart application [46], applied to an e-commerce
scenario. The application maintains a per-user “cart” record
in a Carts table. The AddCart function handles customers’
requests to add products to their cart, while CheckoutCart
allows customers to purchase the products in their cart
and make payment. The CheckoutCart function invokes
the public API of a third-party payment service to han-
dle payment. We retain CheckoutCart in Python but re-
implemented AddCart in JavaScript. This demonstrates



Application W Fns Tmplt Pols Preds Runt
Claim Processing 4 5 9 3 13 12

Image Processing 1 4 11 8 19 10

Shopping Cart 2 2 6 4 11 8

TABLE 3: Policy specification statistics. (W = workflows,
Fns = functions, Tmplt = template policies, Pols = policies,
Preds = specified predicates, Runt = runtime predicates.)

Growlithe’s usability in multi-language applications.
The e-commerce company operates globally. For com-

pliance reasons, the company may be required to process
customers’ payments using payment gateway services that
operate within the customers’ region. Moreover, the com-
pany may need to ensure that the functions operate on the
customers’ cart in the same region as the customer as well.
This would translate to the following policies

P8 Payment region restriction: CheckoutCart should en-
sure that the region of the payment API matches with
the region of customer’s request.

P9 Checkout region restriction: The region of the two
functions, the Cart record, and the customer’s requests
should match with each other.

Modeling costs. The SC, CP, and IP applications consist
of 493, 575, and 243 LoCs, respectively. We modeled 17 and
3 APIs in CodeQL for Python and JavaScript, respectively,
which required 450 and 110 LoCs, respectively. We deploy
these applications using the AWS Serverless Application
Model (SAM) [40]. We added 550 lines to parse the SAM
configuration and to automatically add IAM policies. Lastly,
we implemented the taint infrastructure in 390, and the
translators for policy predicates and identifiers in 180 lines.
We present the ADG and policies of all applications in §B.

Policy statistics. In Table 3, columns 2, 3, and 4
respectively indicate the number of distinct workflows in the
application, the total number of functions in the application
across all workflows, and the number of ADG edges shown
in the policy template generated for each application. As
mentioned in §3.3, each of these edges is assigned a deny
policy initially, and developers revise the policies to enable
data flows in the application. For each application, column 5
indicates the number of edges in the template, where devel-
opers need to specify a non-trivial policy; the remainder of
the edges from column 4 are configured with an allow pol-
icy. Column 6 indicates the total number of predicates across
all the non-trivial policies: each such policy contains 4 to 7
predicates between the read and write permissions. Of these
predicates, column 7 indicates the number of predicates that
are checked at runtime. Thus, Growlithe could statically
check 7-47% of the policy predicates in these applications.

In general, Growlithe can statically check for the names
and properties of conduits and functions (e.g., the region
of a deployed bucket) and dataflow paths (e.g., images
passing through a specific function), which helps in debug-
ging coarse-grained workflow-level dataflows. The runtime

checks complement static checks with fine-grained user- or
invocation-specific policy enforcement.

5.2. Microbenchmarks

We ran microbenchmarks to break down the costs of
Growlithe’s pre-deployment steps and runtime enforcement,
and to assess the scaling of the costs with larger applications.

We created synthetic workflows with the number of
functions varying from 1 to 128, and with the functions
either chained linearly (LC) or invoked concurrently in a
fanout (FO) configuration. All the functions are similar: they
retrieve a file from an S3 bucket, wait for 65ms (around the
median execution time of a serverless function [20]), and
subsequently write the file back to the same S3 bucket.
In each workflow configuration, we configure a uniform
policy on all edges with one of three predicate types: (i)
remote, which checks that the region of the S3 bucket (must
be fetched over the network at runtime) matches that of
the function(s) accessing it (available local to the function
at runtime), (ii) local, which performs similar checks as
remote, except that the region of the S3 bucket is statically
configured, thus avoiding network requests, and (iii) taint,
which checks that each function’s taint set contains preced-
ing function(s) before allowing write to its output bucket.

Pre-deployment costs. We split the pre-deployment
costs into two components: (i) analysis, which includes the
time required to generate CodeQL IR and the ADG from it,
and (ii) apply, which includes the time required to perform
static policy enforcement, add policy assertions in functions,
and create the deployment configurations with IAM rules.
(We ignore the costs for policy specification, as they involve
human intervention and are highly variable.)

We ran the pre-deployment steps for each workflow and
policy configuration 10 times. The pre-deployment cost is
independent of the application size and configuration. The
average cost observed across all experiments was ~43.37 s,
of which, analysis constitutes ~43.25 s. (Standard deviations
are <10%). In principle, the IR and ADG can be built
incrementally from prior builds in subsequent iterations [47].
We defer these optimizations to future work.

This shows that Growlithe adds low overhead in the pre-
deployment steps, making it easy for developers to adopt
Growlithe in their development process.

Runtime costs. Figure 6 shows the end-to-end execu-
tion times of LC and FO workflows (left and right plots,
respectively) in the baseline and with the three policy config-
urations. We run each configuration 50 times and apply the
Interquartile Range (IQR) method [48] to exclude cold-start
times by removing the outliers above Q3 + 1.5×IQR, where
Q1 and Q3 are the first and third quartiles, respectively.
We report the mean over the remaining measurements, with
error bars showing standard deviation.

The average per-function cost is negligible for a local
policy check, while it is 11.7 ms and 24.7 ms for taint and
remote policy checks, respectively, in LC workflows and
13.4 ms and 19.6 ms, respectively, in FO workflows. In
practice, policies may include a mix of predicates, some



1 2 4 8 16 32 64 128
Number of functions in linear chain (LC)

0.1

0.5
2

10

50

Ti
m

e 
(s

)

1 2 4 8 16 32 64 128
Number of functions in fanout (FO)

0.0

0.1

0.2

0.3

0.4

Ti
m

e 
(s

)

Baseline
Local Check

Remote Check
Taint Check

Figure 6: Runtime performance for microbenchmarks.

of which may even be enforceable statically. Thus, the high
overheads in a single function do not necessarily translate to
high end-to-end overheads for entire workflows. We discuss
this further in the next section.

5.3. Performance Costs on Real Applications

Next, we evaluate Growlithe’s pre-deployment and run-
time costs on the real applications from §5.1.

Pre-deployment costs. Similar to the microbench-
marks, the pre-deployment costs were ~49 s for CP and
IP, and ~62 s for SC. The higher cost for SC is due to
having to run analysis steps twice (for Python and JavaScript
code), which currently execute sequentially. The costs can
be lowered by parallelizing the steps across languages.

Runtime costs. We compare the runtime costs of three
configurations: (i) Base, which corresponds to running an
insecure application in vanilla AWS Lambda containers with
default IAM policies configured manually to allow applica-
tion execution, (ii) GrowlitheRT , which corresponds to run-
ning an application with runtime policy enforcement alone,
i.e., all its policies are enforced with only runtime assertions,
and (iii) GrowlitheOpt, which corresponds to running an
application after applying static enforcement, which poten-
tially leads to fewer checks during runtime enforcement. We
measure the code size of the functions after instrumentation,
the runtime memory utilization of the individual functions,
the execution latency of individual functions, the cold start
latency of functions including container boot up times, and
the end-to-end latencies of the complete workflows. For
the latency metrics, we collect 100 measurements using the
same input per benchmark for each experiment, and apply
the same pruning as in §5.2 to account for the serverless
platform’s execution variability [21].

Function code size. The code size of the functions in
the Base configuration ranges from 0.5 KB to 8 KB (median:
0.6 KB). The overhead on the code size is highest with
GrowlitheRT configuration, where all policies are added to
the code as assertions. Therefore, we only compare with
the code size of the functions in this configuration, which
ranges from 1.6 KB to 8 KB (median: 2 KB). The maximum
overhead on the code size across all functions is 3.1 KB.

Memory utilization. Memory overhead is a critical
metric because an application requiring more memory would

require a larger and more expensive container. Growlithe’s
max memory overhead (which is due to code assertions
and the taint tracking infrastructure integrated with each
function) is 9 MB across our applications. The highest over-
heads are for GrowlitheRT , which does not have any static
enforcement that could reduce the assertions in the code
and, therefore, reduce the container memory size.

Function cold start latency. Growlithe’s library and
code instrumentation increase the cold start latency of a
function, i.e., the time a request has to wait before the
function is available to process the request. Figure 7A shows
the average cold start latency for the three configurations.
The maximum cold start overhead is ~178 ms, which is
incurred in the IP application. The high overhead is because
we move some costs of runtime enforcement to the container
initialization phase. Specifically, for the predicate checks
that involve looking up remote resources, we initialize con-
nections to those resources during container initialization.
For predicates that can be checked locally, the cold start
overhead for functions is ~14 ms on average.

Function execution latency. Figure 7B shows the
average function execution time for the three configurations.
The error bars show the standard deviation. GrowlitheRT

and GrowlitheOpt configurations incur an average overhead
of 28 ms and 23 ms over the Base configuration, respec-
tively. Most of the runtime checks are lightweight and
incur negligible overheads, but the maximum overheads for
GrowlitheRT and GrowlitheOpt are 102 ms and 98 ms, re-
spectively. These overheads are due to the region-check pol-
icy assertions, which require fetching the region information
from external sources and thus incur network latency costs.
The GrowlitheOpt configuration is on average 19% faster
than GrowlitheRT . The reduction in runtime overheads is
proportional to the number of predicates that are checked
and eliminated statically (Table 3).

The remaining overheads on individual functions due
to remote policy checks could be mitigated by caching the
results of external requests involved in policy checks.

Workflow execution time. We measure the workflow
execution time as the time between the start of the first func-
tion execution in the workflow upon receiving an event and
the completion time of the last function. Using Growlithe,
for single-function workflows, the end-to-end overheads
closely resemble the overheads of individual functions. The
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Figure 7: Cold start and execution times of Growlithe vs. Base. For Claim Processing, the function names are as follows.
AC: AddClaim, AA: AssignAdjuster, GAC: GetAssignedClaims, GC: GetClaim, UC: UpdateClaim, VC: ValidateClaim.

absolute overheads are in 1-102 ms range, which are negli-
gible from an end user’s perspective. In contrast, for more
complex workflows, consisting of multiple functions and
resources, the relative end-to-end overheads are significantly
lower (e.g., only an overhead of 9.5% and 1.7% for IP and
CP’s AddClaim workflows, respectively).
Summary. Static enforcement helps reduce runtime per-
formance overheads. These reductions accrue over a large
number of function invocations, resulting in cost savings for
the application. Overall, we demonstrate that Growlithe pro-
vides a practical compliance tool for serverless applications.

5.4. Porting Costs

We ported the ShoppingCart (SC) application to the
Google Cloud Platform (GCP), deployed it using a Ter-
raform [49] template and added the necessary support for
GCP in Growlithe. We added 318 LoC in CodeQL to support
13 datastore APIs, 60 LoC in Python to implement the
required policy predicates, 247 LoC in Python to parse the
Terraform deployment template for GCP and automatically
generate IAM policies. This effort took 6 person-hours.

In general, the costs of supporting multiple languages
and services on a cloud platform are as follows. Assum-
ing D conduits (cloud services), N dataflow APIs and L
language implementations for each conduit, the ADG gen-
eration effort requires modeling O(D∗N ∗L) dataflow rules.
Furthermore, Growlithe’s enforcement requires a translator
per language to generate assertions from policy predicates
and to retrieve values for abstract identifiers in the predicates
from the cloud platform. Additionally, a developer needs to
handle each cloud’s semantics to generate the IAM policies.

Note that all of these are one-time costs for each conduit
and language to be supported. The tools and models could be
maintained by the community, similar to CodeQL [29, 50].

5.5. Security and Usability Evaluation

We discuss three scenarios, showing (i) Growlithe can
detect bugs in an existing source code violating a data

policy (S1), (ii) the effort required to revise a policy specifi-
cation upon changing an application workflow (S2), and (iii)
the effort required to revise an application upon a change
in policy requirement (S3).

S1. Inadvertent sharing of data. In the CP application,
suppose a developer revises an automated check for claim
validation in the ValidateClaim function, which reads
some attributes of a UserPlan record. Suppose, the devel-
oper accidentally passes some part of this record, which is a
numeric value (e.g., a user’s social security number), to the
AssignAdjuster function instead of the claim id, another
numeric value. In absence of Growlithe, AssignAdjuster
could insert the user’s social security number in the table,
revealing it to the assigned adjuster and violating the user’s
privacy. Fortunately, the policy P3 on edge e4 (Figure 3)
would detect the bug during static enforcement and notify
the developer.

S2. Adapting to a new policy. The iClaim company
revises their privacy policy to state that each customer claim
is processed by only one adjuster. A developer could enforce
this policy in the CP application with a single policy update
on edge e5 (Figure 3) as follows (read is allowed):

write :- getKey(C, 'event', 'claimId')
∧ concat(L, 'ClaimAdjMap:',C)
∧ taintSetExcludes(CurrNode,L)

The policy allows AssignAdjuster to write an entry to
ClaimAdjMap for the claim id, C = event['claimId'],
if the function is not already tainted with the label for
ClaimAdjMap record of the same id.

Once the policy is updated, the application would trigger
an assertion failure due to policy violation at runtime. A
user’s update to her claim record would trigger the validation
pipeline, in which the AssignAdjuster function would
randomly select a new adjuster, and attempt to overwrite the
previously assigned adjuster. To fix the bug, the developer
would also need to revise the AssignAdjuster implemen-
tation to perform a similar check prior to inserting a record
in the ClaimAdjMap table.



1 def lambda_handler(event, context):
2 # pre processing
3 obj = event['ObjKey']
4 tmpfile = '/tmp/' + obj
5 if (not os.path.exists(tmpfile)):
6 bucket.download_file(obj, tmpfile)
7 # ...process tmpfile and upload obj

Figure 8: Blur function with a container reuse vulnerability.

S3. Retaining compliance when adding new
functionality. Recall from the IP application, that
the first three functions in the workflow download
an input image into their local file system at a
path identified by “/tmp/<inputimg>.<fnname>”.
As shown in line 4 of Figure 8, the application
initially configured the Blur function to download
an image, say “UserImgs/photobooth.filter” to
“/tmp/photobooth.blur”, i.e., the local file name was
derived only from the input file’s name in the S3 bucket
and excluded the bucket’s name.

Now suppose, the social media service provider wishes
to post images from its product launch event for public-
ity, but wishes to ensure that no information about unre-
leased products is visible in the posted images. A developer
could quickly accomplish the task by simply replicating
the IP workflow that is used for users’ images and chang-
ing the input and output buckets to, say EventImgs and
FinalEventImgs, respectively.

In the absence of Growlithe, there is a potential leak of
users’ images to the new events workflow via the local file
system of the Blur function (lines 6 in Figure 8). If a Blur
instance cached a user image in the local file system and
was reused to process an event image with the same file
name, the function may process the cached image instead
of downloading the image from the EventImgs bucket.
With Growlithe, however, the policy P7 will detect this
inadvertent leak at runtime and alert the developer.

6. Discussion

Completeness of dataflow coverage. Growlithe’s effi-
cacy depends on the coverage of dataflows in the applica-
tion (§3.5). While the current prototype models dataflows
through cloud services, it does not cover dataflows in
two scenarios. First, it does not cover dataflows through
callbacks, closures, and some I/O libraries (e.g., csv, pan-
das for Python; fs-extra, fast-csv for Javascript). However,
Growlithe can be easily extended to cover these.

Secondly, the prototype does not cover reflective pro-
gramming constructs, where an application generates new
data or code at runtime. Such constructs did not appear in
the applications we studied. Nevertheless, Growlithe can be
extended to handle dynamically generated data by analyzing
the generator code for the application. Growlithe’s runtime
enforcement can automatically handle new control flows that
do no bypass instrumentation, whereas control flows that do

bypass instrumentation are considered malicious behavior
and, hence, are outside the scope of our threat model.

A practical challenge for Growlithe is to keep up with
the evolutions in the programming languages. Growlithe
must be updated to cover any new control and data flow
scenarios arising from newer constructs introduced in future
language versions. Large language models could help in
automatically modeling new conduits and dataflows [51].

Ensuring policy correctness. Growlithe’s language-
independent ADG and declarative policy language are the
first steps towards reducing policy specification errors for
serverless. Policy specification could be further simplified
by automatically generating policies in Growlithe’s language
from natural language specifications [52, 53]. Additionally,
Growlithe could be enhanced with tools to visualize the
annotated ADG and for testing and debugging to enable
reasoning about the correctness of policies.

7. Related Work

Compliance solution architectures. With the enact-
ment of modern data privacy regulations, several compliance
solutions have been proposed for software systems. Some
solutions integrate compliance mechanisms within the data
layer [54–57], but focus on a single type of data store: block
storage or a database management system. Purview [58]
centralizes governance of data across multiple structured
data stores and enables enforcing fine-grained access con-
trol. These solutions are insufficient to ensure compliant data
use in applications where data is processed across multiple
components backed by heterogeneous service stacks.

Other solutions integrate policy enforcement within web
services, e.g., at the interface between the application logic
and the database adapter [17], within language runtime [19],
or using static analysis on application source code [18].
These solutions were designed for conventional web appli-
cations, which are different from serverless applications that
Growlithe supports, and cannot adapt to application changes.

RuleKeeper [59] enables compliant use of users’ per-
sonal data based on their consent in MVC-style web frame-
works. RuleKeeper enforces access control policies in each
controller function through static analysis and runtime en-
forcement. Growlithe enables compliance in serverless ap-
plications, which are designed as workflows consisting of
several functions communicating directly or through het-
erogeneous datastore or communication services. Like Rule-
Keeper, Growlithe also relies on modeling data conduits and
enforces policies through a hybrid static-dynamic mecha-
nism. Unlike RuleKeeper, however, Growlithe can enforce
policies on end-to-end dataflows within a serverless applica-
tion. Moreover, instead of relying on a middleware for policy
enforcement, which requires platform support, Growlithe
enforces policies through assertions in application code.

Security in serverless applications. Trapeze [24] en-
forces dynamic and fine-grained IFC in serverless applica-
tions, which requires modifications to data stores and the
function’s language runtime. It protects against a strong



threat model where functions are mutually distrusting and
data can leak through storage and implicit termination
channels. Growlithe uses a hybrid mechanism to enforce
fine-grained IFC in serverless applications, which is more
efficient, and is independent of the function’s runtime.
Growlithe’s IFC model could also be enhanced to provide
termination-sensitive noninterference guarantees.

Valve [22] enforces coarse-grained dataflow policies,
controlling the data services that should be accessible by
specific functions in different workflows. Applications need
to use a custom container, which integrates a network proxy
to discover data flows between functions, data store and
communication services at runtime, and a runtime monitor
to perform taint tracking at the boundaries of network I/O
and filesystem calls. Growlithe focuses on enforcing fine-
grained policies addressing the data privacy requirements of
end users as well as the application. Furthermore, Growlithe
operates in the application layer, independent of the cloud
platform and tools. Finally, Growlithe’s hybrid enforcement
mechanism enables a more agile application development
lifecycle: Growlithe can adapt to application changes by
re-running the static analysis in the offline stage and re-
deploying the functions only if the instrumentation changes.

Watchtower [60] models checks, such as whether a user
has consented to the use of data accessed by functions,
or whether sensitive data accesses are logged for auditing,
as safety properties, and detects violations of these proper-
ties in a serverless application through runtime monitoring.
Growlithe can directly specify such policies using its policy
specification language, and enforce the policies at runtime.

Cloud security tools. Most cloud providers offer an
Identity and Access Management (IAM) tool [8–10, 61]
for specifying access control policies for an application
and its resources. The tools vary in their levels of support
for complex and fine-grained access control policies. Cloud
providers also provide a portfolio of tools for orthogonal
purposes, such as resource configuration management [62]
and software vulnerability detection [63, 64]. None of these
tools support dataflow graph generation and analysis by
application developers for data policy compliance.

Policy specifications. Prior work has extensively
explored declarative policy languages for trust manage-
ment [65–67] and data policy enforcement [16]. Similar
to these efforts, Growlithe also uses a declarative Datalog-
based specification language. Resin [13] embeds developer-
specified policies as assertions within the application source
code and annotates data variables for policy enforcement. By
allowing declarative policy specification on the application’s
ADG and then automatically inserting assertions derived
from these policies into the source code, Growlithe reduces
developer effort for policy specification compared to Resin.

Dataflow analysis tools. Dataflow tracking and anal-
ysis is central to many types of applications, such as
fault localization or root cause analysis for distributed soft-
ware [68, 69], and automatic causal inference between
events [70, 71]. These tools typically track dataflows at the
network layer and do not scale to application workloads

consisting of concurrent or inter-leaved requests between its
components, such as those arising in serverless applications.

Alternatively, dataflow analysis can be done per applica-
tion through static or dynamic analysis [72]. Existing tools
for assessing security and privacy vulnerabilities [73, 74]
can only support applications in one language at a time and
do not cover I/O. Hence, they are not suitable for end-to-end
dataflow analysis required for serverless applications.

GRASP [75] creates reachability graphs in a serverless
application from existing IAM policies and resource config-
urations, which developers can query to determine if any
application resources are inadvertently publicly exposed.
AUTOARMOR [23] discovers communications between mi-
croservices through static analysis and automatically spec-
ifies access control policies on the microservices. POLY-
CRUISE [76] is a dynamic flow analysis tool to discover
data leaks and code vulnerabilities in multi-lingual programs
(covering Python and C). It suffers from false negatives,
since it can only discover vulnerabilities in the parts of a
program actually executed at runtime, and from high runtime
overheads, making it unsuitable for serverless applications.
CtxTainter [77] uses dynamic dataflow analysis to only
detect leaks across requests in serverless applications.

In contrast to these tools, Growlithe enforces fine-
grained access and flow control policies across multi-lingual
serverless functions, and combines static and runtime en-
forcement to achieve coverage and low performance costs.

8. Conclusion

To the best of our knowledge, Growlithe is the first
cross-service and cross-language serverless compliance tool
that works without requiring changes in the underlying
infrastructure, enabling easy adoption. Growlithe builds a
fine-grained application dataflow graph, allows developers
to specify their policies using a rich Datalog-style syntax,
and enforces the policies through a hybrid static-dynamic
mechanism. We show that Growlithe can be used for secur-
ing serverless applications in practice with low overhead.

Growlithe takes the first step to empower developers to
meet their application-specific compliance goals as part of
the serverless development lifecycle. Achieving compliance
can be further eased with the help of recent advancements
in language models, which we leave to future work.
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Predicate Description
Arithmetic Predicates
add(x, y, z) Checks if x equals y + z

sub(x, y, z) Checks if x equals y - z

mul(x, y, z) Checks if x equals y * z

div(x, y, z) Checks if x equals y / z

rem(x, y, z) Checks if x equals y % z

Relational Predicates
eq(x, y) Check if x == y.

not(x) Check if !x is true.

lt(x, y) Checks if x is less than y

le(x, y) Checks if x is less than or equals y

gt(x, y) Checks if x is greater than y

ge(x, y) Checks if x is greater than or equals y

String Comparision Predicates
hasSubstr(str, sstr) Checks if sstr is a substring in the string str

concat(s, x, y) Assign to s the concatenation of strings x || y.

Data based predicates
getVal(v, d, k1, ..., kn) Assign to v the dictionary value associated

with keys k1, ..., kn, i.e., v = d[k1][...][kn].

getExternalVal(v, t, k,
a)

Assign to v the value of the attribute a of the
item in the table t with the key k.

Taint based predicates
taintSetIncludes(n, l) Check if the taint set for ADG node n con-

tains label l.

taintSetExcludes(n, l) Check if the taint set for ADG node n does
not contain label l.

TABLE 4: Predicates for Growlithe’s policy language.

Appendix A. Policy Predicates

Table 4 shows a list of Growlithe’s policy predicates.
These predicates are used for arithmetic, relational and
string comparisons, and for retrieving values from program
variables stored in Growlithe’s ADG. The taint checking
predicates are used for specifying flow constraints.

Appendix B. Policy Examples

B.1. Claim Processing (CP)

Here, we describe how the developer uses Growlithe to
specify the policy requirements (P1, P2, P3) in CP. They
leverage the ADG for the application shown in Figure 9.
The developer updates the policy on the edge in GetClaim,
where the source conduit describes an item in the Claims
table. This policy allows read access to only the claim owner
(P1) or the assigned adjuster (P2):

read :- (getVal(U,SessionAuth, 'sub')
∧ getVal(C,ObjectHandler, 'UserID')
∧ eq(U,C))

∨ (getVal(U,SessionAuth, 'sub')
∧ getExternalVal(A, 'ClaimAdjMap',Object, 'AdjID')
∧ eq(U,A))

$event

API:
(/getClaim/$c)

Claims:$c

$response

GetClaim

$response

$event
API:
(/updateClaim/c2)

Claims:$c

$event
API:
(/addClaim) Claims:$c $event UserPlan:$u

AssignAdjuster:
$payload

$event ClaimAdjMap:$c

Adjusters:*
UpdateClaim

AddClaim

$event

API:
(/getAssignedClaims)

ClaimAdjMap:*GetAssignedClaims

$response

ValidateClaim

AssignAdjusters

Figure 9: ADG for Claim Processing

Similarly, a developer adds the following policy in
UpdateClaim on the edge Claims as the sink node (P1,
P2). Since this is an update operation, and the policy check
depends on a non-key attribute, the policy would need to
fetch the required attribute for the item being updated.

write :- (getVal(U,SessionAuth, 'sub')
∧ getExternalVal(C,Resource,Object, 'UserID')
∧ eq(U,C))

∨ (getVal(U,SessionAuth, 'sub')
∧ getExternalVal(A, 'ClaimAdjMap',Object, 'AdjID')
∧ eq(U,A))

Finally, the developer defines the taint check policy in
AssignAdjuster function’s edge, where the source node is
the event source in the function and the sink node is the
ClaimAdjMap table. The policy from §3.2 looks like:

write :- taintSetExcludes(PredNode, 'UserPlan:*')

B.2. Image Processing (IP)

We describe how a developer specifies the policy re-
quirements (P4, P5, P6, P7) in IP using the ADG shown in
Figure 10. We only show policies specified by developers
using our policy predicates and identifiers, and skip the
policies which “allow” the permission.

To ensure that the functions process images in the same
region (P4), the developer adds the following policy for each
edge where the source node is an object in S3 bucket, and
sink node is a local file in each function in the application:

read :- eq(InstRegion, ResourceRegion)

Next, for each edge in the intermediate functions
(Transform, Filter, Blur) where the sink node is an object
in S3 bucket, the developer adds the following policy to
ensure that the functions store their output in the same
bucket as their input (P4, P7):

write :- eq(InstRegion,ResourceRegion)
∧ concat(Label,Resource, ':*')
∧ taintSetIncludes(PredNode,Label)

And finally, the developer adds the following policy for
the edge in the TagStore function where the sink node is



$event

$bucket:
$obj

$bucket:
$out

$response

TempFS:
$img1

TempFS:
$img2

$event

$bucket:
$obj

$bucket:
$out

$response

TempFS:
$img1

TempFS:
$img2

$event

$bucket:
$obj

$bucket2:
$out

$response

TempFS:
$img1

$event

$bucket:
$obj

$bucket:
$out

$response

TempFS:
$img1

TempFS:
$img2

Transform
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Figure 10: ADG for Image Processing

$event
API:
(/addToCart) Carts:$key

$response

AddToCart

$event
API
:(/checkoutCart)

Carts:$key

$response

CheckoutCart

API
:(/stripe/us/..)

API
:(/getProduct/prodID)

Figure 11: ADG for Shopping Cart

an object in S3 bucket to ensure that the user images are
blurred and are not shared with advertisers (P5, P6):

write :- (eq(InstRegion,ResourceRegion)
∧ eq(Resource, 'FinalAdvertImgs')
∧ taintSetIncludes(PredNode, 'AdvertImgs:*'))

∨ (eq(InstRegion,ResourceRegion)
∧ eq(Resource, 'FinalUserImgs')
∧ taintSetIncludes(PredNode, 'UserImgs:*'))
∧ taintSetIncludes(PredNode, 'Blur'))

B.3. Shopping Cart (SC)

The developer specified policies in SC using the ADG
shown in Figure 11. They specify the following policy
requirement in CheckoutCart on the edge where the source
node is the event source of the function, that the function
should process the checkout request in the same region as
the user request and the user’s profile (P9):

read :- getVal(R,SessionAuth, 'address', 'region')
∧ eq(R,SessionRegion) ∧ eq(R, InstRegion)

Similarly, the developer specifies the policy on the edge
with the source node as record from Carts, the sink node
is an external API for processing the payment (P8):

read :- eq(ResourceRegion, InstRegion)
write :- concat(S, 'https://',SessionRegion)

∧ concat(P,S, '.payment-gateway/process')
∧ eq(P,Object)

Appendix C. Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper introduces Growlithe, a novel tool designed
to help developers enforce data flow control policies in
serverless applications. Growlithe combines static analysis
with runtime enforcement to ensure compliance with data
protection regulations while remaining both language- and
platform-independent. It allows developers to specify and
customize data flow policies declaratively and has been
prototyped and evaluated on AWS Lambda applications.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science.

• Provides a Valuable Step Forward in an Established
Field.

C.3. Reasons for Acceptance

1) The paper creates a new tool to enable future research.
Growlithe offers a novel design for specifying and
enforcing data flow policies in serverless applications.
By supporting cross-language and cross-service data
flow policies and being made available as open-source,
Growlithe promotes further research in policy compli-
ance within serverless environments.

2) The paper provides a valuable step forward in an
established field. It applies data flow control to de-
tect compliance violations in serverless applications,
an emerging setting that poses unique challenges due
to the heterogeneous nature of serverless platforms.
By combining static analysis and runtime enforcement,
Growlithe’s hybrid approach contributes to advancing
data flow control in serverless environments.
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